资料仓库证券大数据假新闻展览馆

氢化

2021-07-16 12:27:56

氢化也称为加氢,是一种用氢气和其他化合物反应的单元操作,通常发生在镍、钯、铂等催化剂表面。氢化通常用于还原未饱和的有机化合物或其他化合物。碳氢化合物的氢化可以还原掉分子中的双键和三键。典型的氢化过程是烯烃加氢,有一分子的氢气加入烯烃分子中。由于氢气不活跃,通常必须有催化剂的存在才能反应,无催化剂的氢化过程只在高温下才发生。

氢化在化工生产中一般分为两种:

  • 加氢- 单纯增加有机化合物中氢原子的数目,使不饱和的有机物变为相对饱和的有机物,如将苯加氢生成环己烷以用于制造锦纶;将鱼油加氢制作硬化固体油以便与贮藏和运输;制造合成润滑油、肥皂、甘油的过程也是一种加氢过程。
  • 氢解- 同时将有机物分子进行破裂和增加氢原子。如将煤或重油经氢解,变成小分子液体状态的人造石油,经分馏可以获得人造汽油。

过程

资料专题:氢化过程

设备

对于氢化过程,化学工程师可以选择三大类设备:

  • 常压间歇加氢
  • 高温/高压间歇加氢
  • 流动加氢

常压加氢

常压加氢是最原始的加氢方法。现在仍然用于教学用途。常压加氢通常在圆底烧瓶中进行,烧瓶口用橡胶圈密封,烧瓶内装有溶解的反应物和固体催化剂,并用氮气或氩气隔绝空气做保护气。氢气通过氢气球持续加入,并通过不断搅拌,以促进三相反应物反应。可以通过监视氢气球的变化或氢气的吸收来来判断氢气的消耗量,进而判断氢化反应的进行程度。通常使用盛有硫酸铜等有色液体的刻度管英语Sight glass来测量氢气的吸收量,或使用带有刻度的反应器。

高温/高压加氢

对于许多氢化反应,如去除保护基团的氢解反应和芳香体系的还原反应,常温常压下进行的十分缓慢,对于这种类型的反应一般使用高压系统。在这种情况下,催化剂添加到惰性氛围下的压力容器中,氢气直接从气瓶或实验室的供氢源加入体系中。加压的浆液体系通过机械摇动进行搅拌混合,或者使用旋转篮搅拌,也可以加热,让浆体自行混合,因为压力弥补了加热导致的气体溶解度的降低。

流动加氢

流动加氢技术已经成为工业上的一种热门技术,工业应用规模也逐渐增加。该技术将氢气和稀释的溶解于溶液中的反应物连续地通过固定床催化剂。通过使用现有的高效液相色谱技术,系统允许压力从常压到加压至 1,450psi(100bar),也可以提高反应温度。在实验室级的反应中,可以使用一系列预制的整装催化剂,使用时无需称重或去除失效的催化剂。

工业反应器

工业上,催化加氢使用装有已负载催化剂的平推流反应器。操作温度、压力通常很高,具体的数值取决于催化剂的种类。相对于实验室内的催化剂,工业上催化剂在载体上的负载量很低,并且金属中添加了不同的助剂或使用混合金属来改善活性、选择性和稳定性。通常使用金属镍,因为镍相对其它贵金属是活性低、易于控制且价格便宜。

气液感应反应器(加氢器)也用于催化加氢。

参考文献

Hudlický, Miloš. Reductions in Organic Chemistry. Washington, D.C.: American Chemical Society. 1996: 429. ISBN0-8412-3344-6.

Hydrogenation of nitrobenzene using polymer bound Ru(III)complexes as catalyst. Ind. Jr. of Chem. Tech. 2000, 7: 280.

Patel, D. R. Hydrogenation of nitrobenzene using polymer anchored Pd(II)complexes as catalyst. Journal of Molecular Catalysis. 1998, 130: 57. doi:10.1016/s1381-1169(97)00197-0.

Knowles, W. S. Application of organometallic catalysis to the commercial production of L-DOPA. Journal of Chemical Education. March 1986, 63(3): 222. Bibcode:1986JChEd..63..222K. doi:10.1021/ed063p222.

Atkins, Peter W. Shriver & Atkins' inorganic chemistry. 5th. New York: W. H. Freeman and Co. 2010: 696. ISBN978-1-4292-1820-7.

Blaser, Hans-Ulrich; Pugin, Benoît; Spindler, Felix; Thommen, Marc. From a Chiral Switch to a Ligand Portfolio for Asymmetric Catalysis. Accounts of Chemical Research. December 2007, 40(12): 1240–1250. doi:10.1021/ar7001057.

Mallat, T.; Orglmeister, E.; Baiker, A. Asymmetric Catalysis at Chiral Metal Surfaces. Chemical Reviews. 2007, 107(11): 4863–90. PMID17927256. doi:10.1021/cr0683663.

Adams, Roger; Voorhees, V. Apparatus for catalytic reduction. Organic Syntheses. 1928, 8: 10. doi:10.15227/orgsyn.008.0010.

Joshi, J.B.; Pandit, A.B.; Sharma, M.M. Mechanically agitated gas–liquid reactors. Chemical Engineering Science. 1982, 37(6): 813. doi:10.1016/0009-2509(82)80171-1.

外部链接

规范控制